Our website uses cookies to enhance and personalize your experience and to display advertisements (if any). Our website may also include third party cookies such as Google Adsense, Google Analytics, Youtube. By using the website, you consent to the use of cookies. We have updated our Privacy Policy. Please click the button to view our Privacy Policy.

New smartphone project by Google and MTA to address subway issues

https://media.cnn.com/api/v1/images/stellar/prod/gettyimages-2161596730.jpg?c=16x9&q=w_800,c_fill

The Metropolitan Transportation Authority (MTA) in New York City has partnered with Google for a groundbreaking pilot program focused on enhancing the reliability of its old subway network. Utilizing Google’s mobile technology, the effort aims to detect and resolve rail problems before they cause service interruptions. Named “TrackInspect,” the project signifies a considerable advancement in applying artificial intelligence and contemporary technology to public transportation.

Beginning in September 2024 and wrapping up in January 2025, the pilot project involved equipping certain subway cars with Google Pixel smartphones. These phones were responsible for gathering sound and vibration information to identify possible track issues. This data was subsequently evaluated by Google’s AI systems in the cloud, which identified zones that needed further examination by MTA staff.

“In recognizing the initial indicators of track deterioration, we not only decrease maintenance expenses but also lessen disruptions experienced by passengers,” stated Demetrius Crichlow, the president of New York City Transit, in a statement issued in late February.

The collaboration between the MTA and Google forms part of a wider initiative to update New York’s 120-year-old subway network, which still struggles with issues tied to its outdated infrastructure and regular delays. Although the pilot program showed encouraging outcomes, uncertainties persist regarding the potential expansion of TrackInspect due to the MTA’s budgetary limitations.

The MTA’s partnership with Google is part of a broader effort to modernize New York’s 120-year-old subway system, which continues to face challenges related to aging infrastructure and frequent delays. While the pilot program demonstrated promising results, questions remain about whether TrackInspect will be expanded given the financial constraints facing the MTA.

Tackling delays with AI and smartphones

Subway delays are a persistent problem for New York City commuters. In late 2024, the MTA reported tens of thousands of delays each month, with figures exceeding 40,000 in December alone. These disruptions are caused by a variety of factors, including track defects, construction, and crew shortages.

Los teléfonos inteligentes se colocaron estratégicamente tanto dentro como debajo de los vagones del metro. Los dispositivos externos estaban equipados con micrófonos para captar sonidos y vibraciones, mientras que los internos tenían los micrófonos desactivados para evitar grabar conversaciones de los pasajeros. En cambio, estos dispositivos se concentraban únicamente en las vibraciones para identificar anomalías en las vías.

The smartphones were strategically placed both inside and underneath the subway cars. While the external devices were equipped with microphones to capture audio and vibrations, the internal phones had their microphones disabled to ensure passenger conversations were not recorded. Instead, these devices focused solely on vibrations to detect irregularities in the tracks.

The A train line was selected for the pilot, providing a varied testing environment with both subterranean and elevated tracks. It also featured segments of newly built infrastructure, which served as a benchmark for analysis. Although not every delay on the A line is due to mechanical issues, the data gathered during the pilot could assist in resolving persistent problems and enhancing overall service.

Encouraging outcomes, yet challenges persist

The TrackInspect initiative produced promising results, as the AI system accurately identified 92% of defect locations that were confirmed by MTA inspectors. Sarno estimated his own accuracy rate in anticipating track defects from audio data to be approximately 80%.

The TrackInspect program yielded encouraging results, with the AI system successfully identifying 92% of defect locations verified by MTA inspectors. Sarno estimated his personal success rate in predicting track defects based on audio data at around 80%.

A pesar de su éxito, el programa piloto plantea dudas sobre su escalabilidad y coste. La MTA no ha revelado cuánto costaría implementar TrackInspect en todo su sistema de metro, que abarca 472 estaciones y atiende a más de mil millones de pasajeros cada año. La agencia ya se enfrenta a desafíos financieros, necesitando miles de millones de dólares para completar proyectos de infraestructura en curso.

Google participated in the pilot as part of a proof-of-concept initiative that was provided at no expense to the MTA. However, broadening the program would probably demand substantial investment, making financing a key factor for those making decisions.

An increasing trend in transit advancement

A growing trend in transit innovation

Google has previously worked with other transportation agencies. The tech company has created tools to optimize Amtrak’s scheduling and has teamed up with parking technology providers to incorporate street parking information into Google Maps. Nonetheless, the size and intricacy of New York’s subway system make this project especially ambitious.

The MTA operates the largest subway network in the United States, offering 24-hour service on numerous lines. This continuous operation introduces additional complexity to maintenance tasks, as repairs and upgrades frequently have to be performed alongside active service. Employing AI and smartphone technology, the TrackInspect program might assist the MTA in tackling these challenges more effectively.

Future Prospects

Although the TrackInspect pilot has concluded, the MTA is investigating collaborations with additional technology providers to further improve its maintenance procedures. The agency is also evaluating data from the pilot to assess its effects on minimizing delays and enhancing service. Initial signs indicate that specific types of delays, including those from braking problems and track defects, declined on the A line during the pilot. However, the MTA warns that more analysis is required to verify a direct connection to the program.

Por el momento, el piloto simboliza un paso esperanzador hacia la modernización de las operaciones de la MTA y la resolución de los desafíos de un sistema de tránsito envejecido. Al combinar el conocimiento de empresas tecnológicas como Google con la experiencia de los profesionales del transporte, la ciudad de Nueva York podría ofrecer una experiencia de metro más confiable para sus millones de pasajeros diarios.

For now, the pilot represents a promising step toward modernizing the MTA’s operations and addressing the challenges of an aging transit system. By combining the expertise of tech companies like Google with the experience of transit professionals, New York City may be able to deliver a more reliable subway experience for its millions of daily riders.

As Sarno reflects on the project, he emphasizes the potential of AI-driven solutions to transform public transportation. “This technology allows us to detect problems earlier, respond faster, and ultimately provide better service to our customers,” he said.

The MTA’s collaboration with Google underscores the potential of public-private partnerships to drive innovation in critical infrastructure. Whether TrackInspect becomes a permanent fixture in New York’s subway system remains to be seen, but its success highlights the possibilities of integrating cutting-edge technology into the daily lives of commuters.

By Carol Jones

You may also like